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A combination of independent component analysis and empirical mode decomposition �ICA-EMD� is pro-
posed in this paper to analyze low signal-to-noise ratio data. The advantages of ICA-EMD combination are
these: ICA needs few sensory clues to separate the original source from unwanted noise and EMD can
effectively separate the data into its constituting parts. The case studies reported here involve original sources
contaminated by white Gaussian noise. The simulation results show that the ICA-EMD combination is an
effective data analysis tool.
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I. INTRODUCTION

Data analysis is indispensable for scientific research, but
the available “data processing” methods cannot satisfy the
need to analyze data from nonstationary and nonlinear pro-
cesses. Yet, data analysis is crucial in research as it paves the
way for discovery in physics and nature. We urgently need
new tools for new data and new discoveries. The develop-
ment of the empirical mode decomposition �EMD� and en-
semble EMD methods �1,2� had alleviated the need for new
tools to a large. EMD has been applied in many physicals
fields and contributed to the advancement of the science
�3–10�. But the EMD method, by itself, could not separate
signal from high-intensity noise, for the method treat the
existing noise as part of the data. Independent component
analysis �ICA� on the other hand could separate the un-
wanted noise from the data, if enough sensors are available.
Therefore, we propose here to couple the two methods using
ICA as a preprocessor to remove the noise and then employ
EMD or EEMD to decompose the cleaned data into their
constituting components.

ICA is a recently developed decomposition synthesizing
technique that combines mathematics, statistics, physics, and
computer simulations. Jutten and Herault �11� developed
ICA in the early 1990s to solve the cocktail-party problem.
Bell and Sejnowski �12� used it to develop their model based
on the principle of information maximization preservation. A
couple of years later the fixed-point or FastICA algorithm
was devised �13�. Briefly, ICA is a method for finding under-
lying factors or components in multivariate �multidimen-
sional� statistical data, based on their statistical independence
�14,15�. ICA has been applied in many fields, including
medicine �16�, fMRI �functional magnetic resonance imag-
ing� �17�, optics �18,19�, image recognition �20�, machine
learning �21�, sound analysis �22�, phase synchronization
�23�, complex systems �24�, Fermilab Boosters �25�, and in
EMG �magnetoencephalography� and ECG �electrocardio-
gram��26,27� .

EMD is a data analysis technique similar to wavelet
analysis and singular spectrum analysis �SST�; it is particu-
larly suitable for nonlinear and nonstationary time series
analysis. However, EMD does not assume an a priori basis.
Unlike wavelet analysis and SST, EMD is suitable for de-
scribing nonlinear phenomena. In 1998, Huang �1� proposed
an EMD method for analyzing nonlinear and nonstationary
data. This decomposition method is adaptive and highly ef-
ficient. Huang �2,28,29� also developed intermittence and en-
semble EMD. In 1998 Huang et al. �30� applied EMD to the
study of blood pressure waves in the lung. In 2004 Cum-
mings et al. �31� used EMD to look at the traveling waves
associated with the occurrence of dengue hemorrhagic fever
in Thailand. In 2004 Balocchi et al. �7� applied EMD to
analyze heartbeat intervals series. In 2005 Lam et al. �8�
applied EMD to the measurement of hurst exponents for
semiconductor laser phase dynamics. Moreover, in 2007,
Kozakov et al. �9� proposed EMD for the analysis of the
obtained spatiotemporal patterns. Camp et al. �10� employed
EMD and the Hilbert transform to search for gravitational
waves. In 2007 Wu and Huang �2,32� proposed EMD/EEMD
methods as robust decomposition tools that also serves as a
solution to mode mixing problems. Although EEMD is de-
signed on the premise that noise could assist us in data analy-
sis, EEMD by itself still could not separate the original noise
from the data.

Although ICA has many advantages in data analysis, it
has a big disadvantage: The number of sensors should be
greater than or equal to the number of sources �33–35�. At
present it has been found that with the development of over-
complete or undercomplete representations �33–37�, all of
the original data cannot be separated with a small number of
sensors. Despite EMD’s wide application for data analysis in
many fields, it still has the problem of analysis data under
low-signal-to-noise-ratio �SNR� conditions. To compensate
for the weaknesses of both ICA and EMD and to achieve
optimal effectiveness, we introduce the combined ICA-EMD
method, which combines the advantages of EMD with those
of ICA. McKeown et al. also proposed the combination of
ICA and EMD for processing biomedical signals in EMG
and EEG �38,39�. However, they did not apply the method to
low-SNR environment with small number of sensors. Many
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applications in natural sciences and engineering take place in
a low-SNR environment and the number of sensors allowed
for each application may vary. Moreover, in these two stud-
ies, neither was ICA employed for the removal of noise nor
EMD for source separation. They both used EMD as a filter
to identify the designated signals they needed between 10
and 30 Hz. The ICA-EMD method proposed here can be
used to separate original data and ambient noise with only
two sensors in low-SNR conditions. Before presenting the
applications of this combined method, brief summaries of
ICA and EMD will be given first.

II. SUMMARY ON ICA

ICA is a method for solving the problem of noise source
separation. Hence we will use ICA to reject the white
Gaussian noise. Assume that there is an M-dimensional
zero-mean unknown underling or original sources s�t�
= �s1�t� , ¯ ,sM�t��T, that the components of si are mutually
independent, and that one of s1�t� , ¯ ,sM�t� is a white
Gaussian noise. The unknown underling sources s�t� is
equivalent to M-independent scalar-valued source data si�t�.
All the source data must be statistically independent, and
have a non-Gaussian probability distribution. An exception is
allowed for only one component. We can write the multivari-
ate probability density function of the vector as the product
of marginal independent distributions

p�s� = �
i=1

M

pi�si� . �1�

The measured data x�t�= �x1�t� , . . . ,xN�t��T are observed at
each time point t so that

x�t� = As�t� . �2�

The source data, s�t�, becomes the observed ones through a
transform represented by a M-by-N matrix A,

A = �a11 ¯ a1M

] � ]

aN1 ¯ aNM
� , �3�

where the A matrix consists of some parameters that depend
on the scale of the sensors from the underling sources. How-
ever, with ICA, we can retrieve the statistically independent
signals by estimating an unmixing matrix W. The aim of
ICA is to estimate the matrix in such a way that W�A−1.
Then, the W matrix can be used to retrieve the statistically
independent signals. The equation for signal retrieval is

u�t� = Wx�t� = WAs�t� � s�t� , �4�

where u�t�= �u1�t� , . . . ,uN�t��T are estimate of the underling
sources. ICA is intended to estimate the actual W=A−1.

In fact, we would not be able to know how many under-
ling sources there are in a real-life situation. Consequently,
the number of sensors measuring the underling sources is
also unknown. ICA’s statistical independence can be mea-
sured by the entropy. Entropy is a basic concept of informa-
tion theory �40,41�. Since noise entropy is different from the

entropy of mixed original sources, it can be shown that, with
only two sensors, noise can be separated from mixed original
sources by ICA.

III. SUMMARY ON EMD

Once the underlying source is determined, EMD can be
used to reduce the original sources into their constituent
components, known as the intrinsic mode functions �IMFs�.
EMD uses an adaptive basis derived from each data set to
decompose the variance of that set into a finite number of
IMFs from which instantaneous frequency could be com-
puted through the Hilbert transform. An IMF is a function
that satisfies two conditions �1�: �1� the number of extremes
and the number of zero crossings in the whole data set must
either be equal to or differ at most by one and �2� at any
point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is
zero. To obtain an IMF from the original signal, Huang �1�
suggested the sifting process described below. The sifting
process begins with the identification of the local minima
and maxima of a time series, X�t�. First, identify all the local
maxima, and then connect them with a cubic spline line to
form the upper envelope eu�t�. Repeat the procedure for the
local minima to produce the lower envelope el�t�.

The local mean can be calculated as shown

m1�t� =
eu�t� + el�t�

2
. �5�

The mean is designated in Eq. �5� and the difference between
the data and m1�t� is the first component h1�t�, as obtained in
the following equation:

h1�t� = x�t� − m1�t� . �6�

In the subsequent sifting process, h1�t� is considered the data

h1�k−1��t� − m1k�t� = h1k. �7�

EMD can repeat this sifting procedure k times, until h1k is an
IMF. Now

c1 = h1k, �8�

which is the first IMF component derived from the data. The
standard deviation determines a criterion for stopping the
sifting process. This can be accomplished by limiting the size
of the standard deviation �SD�, defined and computed from
the two consecutive sifting results as follows:

SD = 	
t=0

T 
 ��h1�k−1��t� − h1k�t���2

h1�k−1�
2 �t� � . �9�

When the SD can be set between 0.2 and 0.3, the first IMF c1
is obtained, which can be written as

X�t� − c1 = r1. �10�

Note that the residue r1 still contains some useful informa-
tion. We can therefore treat the residue as new data and apply
the above procedure to obtain

r1 − c1 = r2

LIN, TUNG, AND HUANG PHYSICAL REVIEW E 79, 066705 �2009�

066705-2



]

rn−1 − cn = rn. �11�

This procedure should be repeated until the final series rn no
longer carries any oscillation data. The remaining series is
the trend of this nonstationary data X�t�. Combining Eqs.
�10� and �11� yields the EMD of the original signal,

X�t� = 	
j=1

n

cj + rn. �12�

Thus, one can achieve a decomposition of the data into
n-empirical modes and a residue rn, which can be either the
mean trend or a constant. The IMFs c1 ,c2 , . . . ,cn include
different frequency bands ranging from high to low.

IV. SIMULATIONS AND RESULTS

A. Application of combined ICA-EMD
to low-SNR simulated data

The cocktail-party problem is the most famous example
of an ICA application �13,33–35�. There are five different
positions s1, s2, s3, s4, and s5 with four original sources
which are contaminated by white Gaussian noise. In the
simulation, s1�t� represents the white Gaussian noise. s2�t�,
s3�t�, s4�t�, and s5�t� are the 150, 100, and 40 Hz sine wave-
forms and 3 Hz triangular waveform, respectively. When the
five sources occur simultaneously, two microphones are in-
stalled at different positions to record sounds. Only two sen-
sors are employed to measure the five sources. The two mi-
crophones record signals which constitute a weighted sum of
the speech signals emitted by the five speakers, which we
denote by s1, s2, s3, s4, and s5. The signals received by the
two microphones may be represented as follows:

x1�t� = a11s1�t� + a12s2�t� + a13s3�t� + a14s4�t� + a15s5�t� ,

x2�t� = a21s1�t� + a22s2�t� + a23s3�t� + a24s4�t� + a25s5�t� ,

�13�

where the aij�i=1,2 , j=1, . . . ,5� are different parameters
that depend on the distance of the microphones from the
speakers, and aij indicates the elements of the A matrix.
These are randomly selected constants. Let us take the fol-
lowing mixing matrix:

A = 0.6 0.4 0.8 1 2

0.8 1 0.9 0.8 − 4
� . �14�

However, the mixed matrix A is usually unknown in our
study. Figure 1 shows the time domain of the data received
by two microphones. Figure 2 shows the resulting EMD
components with straightforward application of the numeri-
cal simulation. EMD cannot separate the noise from the sig-
nal and decompose the signal into their constituting compo-
nents under low-SNR condition. ICA, however, finds a linear
transformation W of the dependent sensor waveform x.
From Eq. �4� we get the matrix

W = 0.1119 − 0.1192

0.6349 0.3142
� . �15�

The multiplication of matrix W with x, as in Eq. �4�,
gives us the ICA output u. The results for the estimation of u
via ICA can be seen in Fig. 3. One is noise and the other
comes from mixed sources. With the signal and noise suc-
cessfully separated, we can use EMD method to decompose
data from these mixed sources into its constituting compo-
nents. Figure 4 shows the resulting ICA-EMD components
obtained from the data. The process of EMD reduces the
time series under analysis into components, such as IMFs,
thereby “sifting” or separating out the different frequency
scales of the data. The sifting is done adaptively, without a
priori structure imposed on the data. The sifting first identi-
fies and removes the components with the highest frequen-
cies, then does the same for lower frequencies down to the
lowest trends, as show in Figs. 4�a�–4�e�. The original data is
presented in Fig. 5. The result indicates that ICA-EMD en-
sures effective retrieval of original data.
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FIG. 1. �Color online� The numerical simulation of data re-
ceived by two microphones.
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FIG. 2. �Color online� The resulting EMD component from the
numerical simulation of data.
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B. Application of combined ICA-EMD
to low-SNR length-of-day data

Let us consider how this method is used to analyze dif-
ferent data using as an example the daily length-of-day
�LOD� data set, produced by Gross �2001�, which covers the
period from 20 January 1962 to 6 January 2001, a total of
14 232 days �42�. The raw data were derived from indepen-
dent earth-rotational measurements taken by space-geodetic
techniques that include lunar and satellite laser ranging,
very-long-baseline interferometry, global positioning system
�GPS�, and optical astronometric measurements. Prior to the
recent ensemble EMD �2�, Huang �28� developed an inter-
mittent EMD method for extracting the movements and pe-
riodic variations caused by the sun, the moon, and the earth.
Under some conditions, environmental noise from space may
interfere with GPS transmissions and affect the measure-
ments. Solar activities such as sunspots, lonospheric storms,
and solar transit are the main sources of disturbance for sat-

ellites. Solar transit refers to the situation when the sun, the
survey satellite, and the ground station data receiving an-
tenna form a straight line. The electromagnetic waves emit-
ted from the sun interfere with the reception of satellite sig-
nals at the ground station, resulting in the interruption of
communication. The simulation signals received by the two
satellites may be represented as follows:

x1�t� = a11s1�t� + a12s2�t� ,

x2�t� = a21s1�t� + a22s2�t� ,

where s1 is original LOD data and s2 is white Gaussian noise.
A normally distributed random number with a mean of 0 and
a variance of 0.16 indicates the broad-band white Gaussian
noise. These are randomly selected constants. Let us take the
following mixing matrix:

A = 1 3

2 9
� .

This interference of data transmission by noise is simulated
in Fig. 6, in which the upper graph illustrates x1 and lower
figure, x2.

Figure 7 indicates the decomposition results of the EMD
from the LOD data by the noise disturbance. The ICA-EMD
separates these two types of data into 11 components as
show in Fig. 8. This result verifies Huang’s study �28�; how-
ever, the research shows no noise condition. The first com-
ponent is noise. Here c1 indicates the semimonthly tides.
There are two meteorological tides with a cycle of 18.61
years. c2 represents the monthly tides, c3 shows the quasibi-
monthly tides, c5 is the semiannual cycle, c6 is the annual
cycle, c7 is the quasibiennial cycle, and so forth. Notice the
last component, c11, which is not an IMF but rather the
trend. The comparison between Figs. 7 and 8 shows that
EMD is unable to retrieve the period waveform in low-SNR
condition due to the fact that EMD cubic spline is disturbed
by noise and the correct components cannot be decomposed.
We employ ICA as a preprocessor to remove the noise and
then use EMD to decompose the components. Using the
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FIG. 3. �Color online� Data separated by ICA: �a� white Gauss-
ian noise; �b� mixed sources.
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FIG. 4. �Color online� Data separated by ICA-EMD: �a� white
Gaussian noise; �b� 150 Hz sin waveform; �c� 100 Hz sin wave-
form; �d� 40 Hz sin waveform; �e� 3 Hz triangular waveform; �f� the
last row corresponding to the final residue.
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FIG. 5. �Color online� Original sources: �a� white Gaussian
noise; �b� 150 Hz sin waveform; �c� 100 Hz sin waveform; �d� 40
Hz sin waveform; �e� 3 Hz triangular waveform.
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ICA-EMD, we can easily obtain the period waveform in
low-SNR condition as shown in the results. The near peri-
odic waveforms are crucial elements in the study of geophys-
ics.

C. Several ICA constraints and conditions

For ICA to process data successfully, the following three
conditions ought to first be satisfied. �1� The number of

sensors should be greater than or equal to the number of
sources. This will be improved considerably by ICA-EMD.
�2� All the source signals must be statistically independent
and have a non-Gaussian probability distribution. An excep-
tion is allowed for only one signal component. �3� Tradition-
ally ICA can only analyze stationary data. �4� A priori
knowledge of the probability distributions of the sources can
be used in the cost function. In addition to these constraints,
ICA also has other ambiguities: �1� the variances of the in-
dependent components cannot be determined. The signals
separated by traditional ICA shows opposite phase and un-
equal amplitude. �2� The order will change because the order
of the independent components cannot be determined.

V. CONCLUSION

ICA and EMD each have their own advantages and limi-
tations. Thus, in this study, we propose a combination of
ICA-EMD method that combines the advantages of both.
Data with low SNR, which could not be dealt with in the
past, may now be analyzed using the combined ICA-EMD
method in several ICA constraints and conditions. This com-
bined method is particularly useful for dealing with low-
SNR conditions, a challenging area for data analysis. We
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know that noise is inevitable and ubiquitous. Some noise
might be innocuous, others might be critical for the success
or failure of a project. For example, noise interference in
GPS could lead to plane crashes; a disturbance in radio trans-
mission could obstruct global communication networks. The
combined ICA-EMD analysis can offer a viable solution to
noise removal and also lead to new discoveries.
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